Planetary Science: The Science of Planets Around Stars - Cole & Woolfson - IOP

EUR 38,95 Achat immédiat, Cliquez pour voir les frais d'expédition, Garantie client eBay
Vendeur: nthdegree ✉️ (9.371) 100%, Lieu où se trouve: Norton, Massachusetts, US, Lieu de livraison: US et de nombreux autres pays, Numéro de l'objet: 363003119286 Planetary Science: The Science of Planets Around Stars - Cole & Woolfson - IOP.  

Planetary Science

The Science of Planets Around Stars

by George H.A. Cole and Michael M. Woolfson

Institute of Physics Publishing, 2002, 075030815X, Trade Paperback, VG condition, pen notes on front endpaper and small margin notes on a few pages, no spine creases, 508 pages.

This book is concerned with structure of planets, the stars they orbit and the interactions between them. There are many planetary systems other than our own, but it is only through a detailed understanding of the relatively accessible bodies in our Solar System that a thorough appreciation of planetary science can be gained. This is particularly pertinent with the recent discovery of extra-solar planets and the desire to understand their formation and the prospect of life on other worlds. Planetary science courses require an understanding of aspects from a wide range of subjects, including astronomy, astrophysics, geophysics, geology and mineralogy. This text addresses the needs of these wide ranging interests and courses, as it assumes no prior knowledge of astrophysics or geophysics. The book is written in two parts, making it suitable for students at different levels and approaching planetary science from differing backgrounds. Twelve independent descriptive chapters reveal our Solar System and the diverse bodies it contains; including satellites, planetary rings, asteroids, comets, meteorites and interstellar dust. These chapters are accompanied by 42 detailed topics that discuss specialised subjects in a quantitative manner and will be essential reading for those on higher level courses. These include mineralogy, stellar formation and evolution, Solar System dynamics, atmospheric physics, planetary interiors, thermodynamics, planetary astrophysics and exobiology. Problems and answers are also included. In Planetary Science: The Science of Planets Around Stars Professors Cole and Woolfson present a complete overview of planetary science for students of physics, astronomy, astrophysics, earth sciences and geophysics. The novel approach taken makes the book suitable for students in various disciplines and from differing scientific backgrounds.

 

 

CONTENTS

CONTENTS INTRODUCTION xix A REVIEW OF THE SOLAR SYSTEM 1 THE UNITY OF THE UNIVERSE 1 1.1. Cosmic abundance of the chemical elements 1 1.2. Some examples 2 Problem 1 4 2 THE SUN AND OTHER STARS 6 2.1. The interstellar medium 6 2.2. Dense cool clouds 6 2.3. Stellar clusters 8 2.4. A scenario for formation of a galactic cluster 10 2.5. Main sequence stars and their evolution 12 2.6. Brown dwarfs 12 2.7. Stellar companions 12 Problem 2 15 3 THE PLANETS 16 3.1. An overview of the planets 16 3.2. Orbital motions 16 3.3. Orbits of the planets 19 3.4. Planetary structures general considerations 21 3.4.1. Planetary magnetic fields 24 Problems 3 26 4 THE TERRESTRIAL PLANETS 27 4.1. Mercury 27 4.1.1. The surface of Mercury 28 4.1.2. Mercury's magnetic field 31 4.1.3. Mercury summary 31 4.2. Venus 32 4.2.1. The surface of Venus 32 4.2.2. The atmosphere of Venus 35 4.2.3. Venus and magnetism 38 4.2.4. Venus summary 38 4.3 The Earth 38 4.3.1. The shape of the Earth 39 4.3.2. Surface composition and age 39 4.3.3. Changing surface features 41 4.3.4. Surface plate structure 41 4.3.5. Heat flow through the surface 46 4.3.6. Earthquakes 49 4.3.6.1. The crust 51 4.3.6.2. The mantle 52 4.3.6.3. The core 52 4.3.7. The Earth's atmosphere 52 4.3.8. The Earth's magnetic field 53 4.3.9. Earth summary 54 4.4. Mars 54 4.4.1. The surface of Mars 54 4.4.1.1. The highlands 55 4.4.1.2. The plains 57 4.4.1.3. Volcanic regions 58 4.4.1.4. Channels and canyons 60 4.4.2. Consequences of early water 62 4.4.3. Later missions 62 4.4.4. The atmosphere of Mars 65 4.4.5. Magnetism and Mars 66 4.4.6. Mars summary 66 Problem 4 67 5 THE MAJOR PLANETS AND PLUTO 68 5.1. Jupiter 68 5.1.1. The internal structure of Jupiter 68 5.1.2. Heat generation in Jupiter 5.1.3. The atmosphere of Jupiter 70 5.1.4. Jupiter's magnetic field 72 5.1.5. Jupiter summary 73 5.2. Saturn 74 5.2.1. The internal structure of Saturn 74 5.2.2. Heat generation in Saturn 75 5.2.3. The atmosphere of Saturn 75 5.2.4. Saturn's magnetic field 75 5.2.5. Saturn summary 76 5.3. Uranus 77 5.3.1. The internal structure of Uranus 78 5.3.2. Heat generation in Uranus 78 5.3.3. The atmosphere of Uranus 78 5.3.4. The magnetic field of Uranus 79 5.3.5. Uranus summary 79 5.4. Neptune 80 5.4.1. The internal structure of Neptune 80 5.4.2. Heat generation in Neptune 81 5.4.3. The atmosphere of Neptune 81 5.4.4. Neptune's magnetic field 81 5.4.5. Neptune summary 82 5.5. Pluto 82 5.5.1. Physical characteristics of Pluto 83 5.5.2. Relationship with Charon 83 Problem 5 84 6 THE MOON 85 6.1. The physical characteristics of the Moon 85 6.1.1. The distance, size and orbit of the Moon 85 6.2. Earth Moon interactions 88 6.2.1. The diurnal tides 88 6.2.2. The effects of tides on the Earth Moon system 89 6.3. Lunar and solar eclipses 90 6.3.1. Solar eclipses 90 6.3.2. Eclipses of the Moon 90 6.4. The lunar surface 91 6.4.1. The maria. 92 6.4.2. The highlands 93 6.4.3. B reccias 95 6.4.4. Regolith: lunar soil 95 6.5. The interior of the Moon 96 6.5.1. Gravity measurements 96 6.5.2. Lunar seismicity 98 6.5.3. The interior structure of the Moon 98 6.5.4. Heat flow and temperature measurements 98 6.6. Lunar magnetism 100 6.7. Some indications of lunar history 101 6.8. Moon summary 103 Problems 6 104 7 SATELLITES AND RINGS 105 7.1. Types of satellites 105 7.2. The satellites of Mars 105 7.3. The satellites of Jupiter 107 7.3.1. Io 107 7.3.2. Europa 109 7.3.3. Ganymede 110 7.3.4. Callisto 111 7.3.5. Commensurabilities of the Galilean satellites 112 7.3.6. The smaller satellites of Jupiter 113 7.4. The satellites of Saturn 114 7.4.1. Titan and Hyperion 114 7.4.2. Minas, Enceladus, Tethys, Dione and co-orbiting satellites 115 7.4.3. Rhea and Iapetus 117 7.4.4. Phoebe 117 7.4.5. Other small satellites 118 7.5. The satellites of Uranus 118 7.6. The satellites of Neptune 119 7.7. Pluto's satellite 120 7.8. Ring systems 120 7.8.1. The rings of Saturn 120 7.8.2. The rings of Uranus 122 7.8.3. The rings of Jupiter 122 7.8.4. The rings of Neptune 123 7.9. General observations 123 Problem 7 123 8 ASTEROIDS 124 8.1. General characteristics 124 8.2. Types of asteroid orbits 126 8.3. The distribution of asteroid orbits Kirkwood gaps 127 8.4. The compositions and possible origins of asteroids 128 Problem 8 131 9 COMETS 132 9.1. Types of comet orbit 132 9.2. The physical structure of comets 135 9.3. The Oort cloud 139 9.4. The Kuiper belt 142 Problems 9 143 10 METEORITES 144 10.1. Introduction 144 10.2. Stony meteorites 148 10.2.1. The systematics of chondritic meteorites 148 10.2.2. Achondrites 151 10.3. Stony irons 153 10.4. Iron meteorites 155 10.5. The ages of meteorites 159 10.6. Isotopic anomalies in meteorites 159 10.6.1. Oxygen in meteorites 159 10.6.2. Magnesium in meteorites 160 10.6.3. Neon in meteorites 162 10.6.4. Other isotopic anomalies 163 Problems 10 163 11 DUST IN THE SOLAR SYSTEM 164 11.1. Meteor showers 164 11.2. Zodiacal light and gegenschein 166 11.3. Radiation pressure and the Poynting Robertson effect 166 Problem 11 167 12 THEORIES OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM 168 12.1 The coarse structure of the Solar System 168 12.2. The distribution of angular momentum 168 12.3. Other features of the Solar System 169 12.4. The Laplace nebula theory 170 12.4.1. Objections and difficulties 170 12.5. The Jeans tidal theory 171 12.5.1. Objections and difficulties 172 12.6. The Solar Nebula Theory 172 12.6.1. The transfer of angular momentum 173 12.6.2. The formation of planets 173 12.6.2.1. Settling of dust into the mean plane 174 12.6.2.2. Formation of planetesimals 174 12.6.2.3. Planets and cores from planetesimals 174 12.6.2.4. Gaseous envelopes 174 12.6.3. General comments 174 12.7. The capture theory 175 12.7.1. The basic scenario of the capture theory 175 12.7.2. Modelling the basic capture theory 175 12.7.3. Planetary orbits and satellites 176 12.7.4. General Comments 176 12.8. Ideas on the evolution of the Solar System 178 12.8.1. Precession of elliptical orbits 178 12.8.2. Near interactions between protoplanets 179 12.9. A planetary collision 179 12.9.1. The Earth and Venus 179 12.9.2. Asteroids, comets and meteorites 181 12.10. The origin of the Moon 181 12.10.1. Darwin's fission hypothesis 181 12.10.2. Co-accretion of the Earth and the Moon 182 12.10.3. Capture of the Moon 182 12.10.4. A single impact theory 183 12.10.5. Capture in a collision scenario 183 12.11. Other bodies in the Solar System 185 12.11.1. Mars and Mercury 185 12.11.2. Neptune, Triton, Pluto and Charon 185 12.12. Isotopic anomalies in meteorites 187 12.13. General comments on a planetary collision 189 Problem 12 189 TOPICS A BASIC MINERALOGY 190 A.1. Types of rock 190 A.2. Types of minerals 191 A.2.1. Silicates 192 A.2.2. Carbonates 193 A.2.3. Oxides 193 A.2.4. Other minerals 194 A.3. Rock composition and formation 194 A.3.1. Igneous rocks 194 A.3.2. Sedimentary rocks 196 A.3.3. Metamorphic rocks 198 A.3.3.1. Thermal metamorphism 199 A.3.3.2. Pressure metamorphism 199 A.3.3.3. Regional metamorphism 200 Problems A 200 B GEOCHRONOLOGY RADIOACTIVE DATING 202 B.1. Comments on atomic structure 202 B.1.1. Nuclear structure 202 B.1.2. The emissions 203 B.2. The laws governing radioactive decay 204 B.2.1. The physical principles 204 B.2.2. A simple age measurement 205 B.2.3. Decay in a radioactive chain 205 B.2.4. Bifurcated decay 206 B.2.5. Age determination: the closure temperature 206 B.2.6. The isochron diagram 208 B.2.6.1. Rubidium —> strontium 208 B.2.6.2. Samarium —> neodymium 210 B.2.6.3. Rhenium —> osmium : lutetium —> hafnium 210 B.2.6.4. Uranium —> lead 210 B.2.6.5. Thorium —> lead 211 B.2.6.6. Potassium —> argon 211 B.2.7. The concordant diagram 211 B.3. Using nuclear reactors 213 B.3.1. Argon argon dating 213 B.3.2. Fission-track dating 214 Problems B 215 C THE VIRIAL THEOREM 216 Problems C 217 D THE JEANS CRITICAL MASS 218 D.1. An application of the Virial Theorem 218 D.2. From condensations to condensed bodies 220 Problem D 221 E FREE-FALL COLLAPSE 222 Problem E 224 F THE EVOLUTION OF PROTOSTARS 225 F.1. The Hertzsprung Russell diagram 225 F.2. The evolution of a protostar 227 Problems F 229 G THE EQUILIBRIUM OF STARS ON THE MAIN SEQUENCE 230 G.1. Conditions for modelling a main-sequence star 230 G.2. The pressure gradient 231 G.3. The included-mass gradient 232 GA. The luminosity gradient 232 G.5. The temperature gradient 232 G.6. Making models of stars 234 Problem G 234 H ENERGY PRODUCTION IN STARS 235 HA. Proton proton (p-p) reactions a classical view 235 H.2. A quantum-mechanical description 236 H.2.1. The distribution of proton relative energies 237 H.2.2. The rate of making close approaches 238 H.2.3. The tunnelling probability 238 H.2.4. The cross-section factor 239 H.2.5. The energy generation function 239 H.3. Nuclear reaction chains in the Sun 240 Problem H 242 I EVOLUTION OF STARS AWAY FROM THE MAIN SEQUENCE 243 I.1. An overview of the evolutionary path 243 I.2. Hydrogen-shell burning 245 I.3. Helium ignition and helium core burning 246 I.4. Hydrogen and helium shell burning 247 I.5. The evolution of higher mass stars 248 I.6. Final comments 250 Problem I 250 J THE CHANDRASEKHAR LIMIT, NEUTRON STARS AND BLACK HOLES 251 J.1. Some basic quantum mechanics principles 251 J.2. Degeneracy and white dwarf stars 251 J.3. Relativistic considerations 253 J.4. Neutron stars and black holes 254 Problems J 255 K PLANETS AROUND OTHER STARS 256 K.1. Planets around neutron stars 256 K.2. Effects of companions on the central star 256 K.3. Finding the speed and mass of the planet 257 K.4. The preliminary results of observations 260 K.4.1. Mass distributions 260 K.4.2. Characteristics of orbits 262 K.5. The constitution of the companions 263 K.6. Atmospheres 263 K.7. Possibilities of conditions for life 263 K.8. A final comment 264 Problem K 264 L SOLAR-SYSTEM STUDIES TO THE BEGINNING OF THE SEVENTEENTH CENTURY 265 L.1. Views of the ancient world 265 L2. Nicolaus Copernicus 268 L3. Tycho Brahe 268 LA. Johannes Kepler 269 L.4.1. Kepler's determination of orbital shapes 270 L.5. Galileo Galilei 273 Problems L 275 M NEWTON, KEPLER'S LAWS AND SOLAR-SYSTEM DYNAMICS 276 M.1. Isaac Newton, Kepler and the inverse-square law 276 M.2. General orbits 277 M.3. Kepler's laws from the inverse-square-law force 279 MA. Establishing a Solar-System distance scale 281 M.5. The dynamics of elliptical orbits 281 M.6. Some special orbital situations 284 M.6.1. Parabolic paths of projectiles 284 M.6.2. Transfer orbits between planets 286 Problems M 287 N THE FORMATION OF COMMENSURATE ORBITS 288 O THE ATMOSPHERE OF THE EARTH 293 0.1. A simple isothermal atmosphere 293 0.2. The structure of the Earth's atmosphere 296 0.2.1. The variation of temperature with height 296 0.2.2. The upper reaches of the atmosphere 297 0.2.2.1. The exosphere 297 0.2.2.2. The thermosphere 301 0.2.2.3. The homopause 301 0.2.3. The lower reaches of the atmosphere 301 0.2.3.1. The mesosphere 301 0.2.3.2. The stratosphere and troposphere 302 0.3. The dynamics of the atmosphere 304 Problems 0 306 P THE PHYSICS OF PLANETARY INTERIORS 307 P.1. Introduction 307 P.2. Applying the Virial Theorem 307 RI The energies involved 307 P.3.1. The kinetic (degeneracy) energy 308 P.3.2. The electrostatic energy 308 P.3.3. The gravitational energy 309 P.3.4. The energies combined 309 P.4. Maximum radius 310 P.5. Conditions within a planet of maximum radius and mass 311 P.6. Specifying a planet: the planetary body 312 P.7. The minimum mass for a planetary body 312 P.7.1. The rigidity of a solid body 313 P.8. The internal structure of a planetary body 315 P.8.1. The crust 315 P.8.2. The maximum height of surface elevations 315 P.8.3. Hydrostatic equilibrium 315 P.8.4. Mantle and core 316 P.8.5. Variation of pressure and density with depth 316 P.8.6. Specifying K 317 Problems P 317 THE TRANSFER OF HEAT 318 Q.1. Conduction of heat in a solid 318 Q.1.1. The equation of heat conduction in a solid 319 Q.2. Comments on the description of fluid flows 320 Q.2.1. The fluid parameters 321 Q.2.2. The dimensionless parameters 321 Q.2.3. Physical interpretation: rearrangements 322 Problems Q 323 R SEISMOLOGY THE INTERIOR OF THE EARTH 324 R.1. The behaviour of planetary material for an impulsive release of energy 324 R.1.1. Waves without a boundary 324 R.1.2. Waves near a boundary surface 326 R.1.3. Full-body waves 327 R.2. Attenuation of seismic waves 328 R.3. Seismometers and seismographs 328 R.3.1. Travel times and seismic speeds 329 R.3.2. Reflection and refraction across a boundary 329 R.4. Seismic tomography 331 R.5. Long-term hydrostatic equilibrium of planetary material 331 R.6. The Adams Williamson method using earthquake data 331 R.7. Moment of inertia considerations 332 Problem R 333 S MOMENTS OF INERTIA 334 5.1. The moment of inertia of a uniform sphere about a diameter 334 S.2. The moment of inertia of a spherically symmetric distribution 336 S.3. The moment of inertia of a spheroid about the symmetry axis 336 Problem S 338 T THE GRAVITATIONAL FIELD OF A DISTORTED PLANET 339 T.1. The gravitational potential of a spinning planet 339 Problems T 340 U PRECESSION OF THE EARTH'S SPIN AXIS 341 U.1. The basic mechanism 341 U.2. The simple configuration 342 Problem U 343 V INTRINSIC PLANETARY MAGNETISM 345 V.1. Magnetic poles 345 V.2. Magnetic elements: isomagnetic charts 346 V.3. The form of the field 347 V.4. Analysing the field 351 V.5. The result for the Earth 352 V.5.1. The dipole approximation 353 V.5.2. The non-dipole component of the magnetic field 353 V.6. Time dependencies of the magnetic field 355 V.6.1. The dipole field 355 V.6.2. The non-dipole secular field the secular variation 356 V.6.3. Reversals of the direction of magnetization 358 V.6.4. Pole wander 358 V.6.5. Sea floor spreading 359 V.7. Magnetism of other Solar-System planets 361 V.8. Intrinsic magnetism of non-solar planets 363 Problem V 363 W MAGNETIC INTERACTIONS BETWEEN PLANET AND STAR 364 W.1. Transient magnetic components 364 W.2. The origin of the atmospheric fields 366 W.3. The solar wind 367 W.4. Coupling between plasma streams and magnetic fields 369 W.5. Effects of the solar wind 371 W.5.1. The effect on the Earth's field 371 W.5.2. The trapped particles 373 W.5.3. Whistlers 373 W.5.4. The plasma tail 373 W.6. The magnetospheres of other planets 375 W.6.1. The major planets 375 W.6.2. Examples of other planetary bodies 377 W.7. Motion through the interstellar medium 379 W.8. Companions to other stars 379 Problem W 379 X PLANETARY ALBEDOES 380 X.1. The brightness of Solar-System bodies seen from Earth 380 X.2. The equilibrium temperature of the planets 381 Problems X 382 Y THE PHYSICS OF TIDES 383 Y.1. The basics of the tide-raising mechanism 383 Y.2. Spring tides and neap tides 386 Y.3. The recession of the Moon from the Earth 387 Y.4. The magnitude of the mid-ocean tide 389 Y.4.1. Oscillations of fluid spheres 390 Problems Y 392 Z DARWIN'S THEORY OF LUNAR ORIGIN 393 AA THE ROCHE LIMIT AND SATELLITE DISRUPTION 395 AA.1. The Roche limit for fluid bodies 395 AA.2. The Roche limit for a solid body 396 AA.3. The disruption of a solid satellite 398 AA.4. The sphere of influence 400 Problems AA 401 AB TIDAL HEATING OF I0 402 AB.1. Elastic hysteresis and Q values 402 AB.2. Tidal stressing in Io 403 Problems AB 404 AC THE RAM PRESSURE OF A GAS STREAM 405 Problem AC 406 AD THE TROJAN ASTEROIDS 407 Problem AD 410 AE HEATING BY ACCRETION 411 AE.1. Models for the accretion of planets and satellites 411 AE.2. Accretion without melting 411 AE.3. Accretion with melting 412 AE.4. A more realistic initial thermal profile 414 Problem AE 415 AF PERTURBATIONS OF THE OORT CLOUD 416 AF.1. Stellar perturbations 416 AF.2. Perturbations by giant molecular clouds 419 AF.3. Perturbations by the galactic tidal field 420 AF.4. Conclusion 422 Problem AF 423 AG RADIATION PRESSURE AND THE POYNTING ROBERTSON EFFECT 424 AG.1. The force due to radiation pressure 424 AG.2. The Poynting Robertson effect 424 Problem AG 425

AH ANALYSES ASSOCIATED WITH THE JEANS TIDAL THEORY 426 AH.1. The tidal distortion and disruption of a star 426 AH.2. The break-up of a filament and the formation of protoplanets 428 Problem AH 429 AI THE VISCOUS-DISK MECHANISM FOR THE TRANSFER OF ANGULAR MOMENTUM 430 Problem AI 431 AJ MAGNETIC BRAKING OF THE SPINNING SUN 432 AJ.1. Coupling of particles to field lines 432 AJ.1.1. The form of the magnetic field 432 AJ.1.2. The present rate of loss of angular momentum 433 AJ.2. The early Sun 434 Problem AJ 435 AK THE SAFRONOV THEORY OF PLANET FORMATION 436 AK.1. Planetesimal formation 436 AK.2. Planets from planetesimals 437 Problem AK 439 AL THE EDDINGTON ACCRETION MECHANISM 440 AL.1. The accretion cross section 440 Problem AL 441 AM LIFE ON A HOSPITABLE PLANET 442 AM.1. We are here 442 AM.2. Early life on Earth 443 AM.3. Chemical composition 445 AMA. General properties 445 AM.5. Instability due to radiation: role of an atmosphere 447 AM.6. Stability of the surface region 448 AM.7. How many planets might carry advanced life? The Drake equation 448 AM.8. Conclusion 449 AN THE ROLE OF SPACE VEHICLES 451 AO PLANETARY ATMOSPHERIC WARMING 456 AP MIGRATION OF PLANETARY ORBITS 459 AP.1. Deflection in a hyperbolic orbit 459 AP.2. Motion in an infinite uniform planar medium 461 AP.3. Resistance for a highly elliptical orbit 462 AP.4. Resistance for a circular orbit 462 Problem AP 463 AQ INTERACTIONS IN AN EMBEDDED CLUSTER 464 AQ.1. The initial conditions 464 AQ.2. Conditions for an interaction 465 AQ.3. Numerical calculations 465 Problem AQ 466 APPENDIX I 467 PHYSICAL CONSTANTS 474 SOLUTIONS TO PROBLEMS 476 REFERENCES 499 INDEX 501

 

 

nthdegree books

  • Condition: Très bon état
  • Condition: Institute of Physics Publishing, 2002, 075030815X, Trade Paperback, VG condition, pen notes on front endpaper and small margin notes on a few pages, no spine creases, 508 pages.
  • ISBN: 9780750308151

PicClick Insights - Planetary Science: The Science of Planets Around Stars - Cole & Woolfson - IOP PicClick Exclusif

  •  Popularité - 1 personne suit la vente, 0.0 de nouvelles personnes suivent la vente par jour, 1.405 days for sale on eBay. Nombre normal suivi. 0 vendu, 1 disponible.
  •  Meilleur Prix -
  •  Vendeur - 9.371+ articles vendu. 0% évaluations négative. Grand vendeur avec la très bonne rétroaction positive et plus de 50 cotes.

Les Gens ont Aussi Aimé PicClick Exclusif